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Abstract 

A study of finite size corrections to the masses of fermions and 

bound states in the Baxter/ massive Thirring/ sine Gordon lattice field 

theory is discussed. It is shown that information on bound state wave 

functions may be used to extrapolate Monte Carlo mass calculations to 

infinite volume. 
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Numerical lattice QCO calculations are often carried out inside a 

box whose physical size is, at best, only slightly larger than a 

hadron. In this situation, the question of how large the box must be to 

have a negligible (or calculable) effect on the physics is an important 

consideration in selecting the parameters of the calculation. Recent 

work by Weingarten and Velikson' and by Gottlieb3 has shown that the 

data generated in Monte Carlo investigations of the hadron spectrum can 

also be used to study hadron wave functions, which are extracted from 

correlation functions involving spatially extended operators. The 

results are quite reasonable and indicate, for example, that at 13=5.7 

(az0.2 fermi) hadron wave functions fall off substantially with quark 

separations of 3 or 4 sites. In addition to the intrinsic interest of 

studying hadron wave functions, these results may also provide a very 

economical way of estimating finite size effects on spectrum 

calculations. The important practical point here is that, once the 

gauge configurations and quark propagators are generated for the 

spectrum calculations, the study of hadron wave functions requires a 

negligible amount of addltional computer time. In contrast, a direct 

study of finite size effects by varying the size of the box is a very 

expensive proposition requiring independent simulations with very good 

statistics at several different box sizes. It would clearly be 

advantageous to avoid such a calculation by using the wave functions on 

a fixed size lattice to estimate finite size effects. To study this 

possibility David Hochberg and I carried out a Monte Carlo 

investigation4 of the two-dimensional Baxter/ massive Thirring/ sine 

Gordon mode1.5-g This is a very convenient toy model for several 

reasons. It has a nontrivial spectrum consisting of fermions and an 
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adjustable number of fermion-antifermion bound states (sine Gordon 

mesons). For an infinite volume lattice, the spectrum is exactly known 

for all lattice spacings (i.e. not just in the continuum limit).8'g One 

may also carry out Monte Carlo calculations of the spectrum and of the 

bound state wave functions which are quite analogous to the calculations 

in QCD. By exploiting the fact that the Baxter model is equivalent to 

the lattice massive Thirring model, we were able to carry out the Monte 

Carlo calculations in terms of the Ising-like spins oij=+l of the Baxter 

model with an action consisting of local Z-spin and 4-spin couplings. 

The simplicity of the action combined with the fact that the model is 

two-dimensional enabled us to obtain very accurate Monte Carlo results 

(+3X for masses) with only a modest investment of computer time. It 

should be noted that the Baxter model constitutes an exact treatment of 

massive Thirring fermlons' including closed loops, so there is no need 

for a "quenched" approximation. 

To study the dynamics of finite size effects, we varied three 

different parameters in the calculation: (1) The size of the box in 

lattice units, i.e. the number of lattice sites in the space direction; 

(2) The infinite volume mass of the fermion in lattice units (this is 

determined by an elliptic modulus in the standard Baxter parametrization 

of the spin couplings8); (3) The coupling constant g which controls the 

strength of the Thirring interaction (and also determines the bound 

state masses). The spatial size of the lattice varied from 6 to 100 

sites. The number of sites in the time direction was always taken to be 

230, long enough to see pure exponential time-dependence for Fourier 

transformed correlation functions over a large range of time 

separations. For an infinite volume lattice, the fermion and bound 
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state masses are given in terms of the Baxter couplings by analytic 

formulas involving elliptic functions. These were first derived in 

Ref. 8 and are summarized in Ref. 4. In the Monte Carlo calculation, 

the mass of the fermion mF was extracted from the spin-spin correlation 

function (for T>Tc). while the mass of the lowest lying bound state mB 

was obtained from the correlation function for composite operators 

constructed from nearest-neighbor spin pairs (T. i,j'i+l,j separated by one 

site in the spatial direction. The latter operator corresponds to $y5$ 

in the fermion representation. Thus, we looked at the long range 

behavior of the functions 

-m T 
- ZF(e F + e 

-"'&-7) 
1 

B(T) = Ecu x O,O~l,O~x,r~x+l,r~ - 

where Nt is the length of the lattice 

state wave function P(y) was extracted 

(1) 

ZB(e 
-mBT + e-"'g(Nt-') 

1 (2) 

in the time direction. The bound 

from the correlation function 

between a nearst neighbor spin pair and a spatially extended spin pair, 

-m T 
B(T;y) = pJ x O,OOl,O~x,TOxty,r> - Z,Y(y)(e B + e 

-mB(Nt-') 
1 (3) 

with y odd. It is a nontrivial test of this method that the exponent mB 

in (3) is the same as that in (2). We found this to be true to very 

high accuracy. The coefficient $,p(Y)=z$z$(Y) represents the 

factorized residue of the bound-state pole, so that Zip(y) is the 

vacuum-to-bound-state matrix element of the spatially extended operator. 
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We began by considering the Ising/free-fermion case of the Baxter 

model (g=O or in conventional Baxter model notation n=~/2 where 

g=-2cotp). In this case, the spectrum consists of only the fermion. The 

Monte Carlo results for the spin-spin correlation function on a 30x30 

lattice are shown in Fig. 1 along with the exponential fit defined in 

Eq. (1). Note the extremely high quality of the exponential fit over a 

large number of sites. This was typical of all the correlation 

functions we measured, including those for nonlocal operators, which 

made the task of extracting masses and wave functions quite 

straightforward and unambiguous. The mass of the fermion in the free 

field case is shown for various box sizes in Fig. 2. The infinite 

volume fermion mass was chosen to be mFm=0.1178, which corresponds to a 

Compton wavelength (spin-spin correlation length) of about 8; sites. We 

see that the shift of the mass due to finite size effects Is positive 

and monotonically increasing as the box size is decreased. The shift 

becomes large when the box is approximately twice the Compton wavelength 

of the fermion. The solid curve in Fig. 2 is an empirical fit given by 

0.93 l/2 mF = trnEa + + (4) 

It should be noted that the Jordan-Wigner transformation between spins 

and fermions in a finite volume Involves boundary terms (c.f. Ref. 10) 

which shift the allowed momenta by 0(1/L). This might explain the form 

of Eq. (4). [Our lattice is periodic in the spin variables, i.e. in the 

language of Ref. 10 we treat the "a-cyclic" problem rather than the 

“c-cyclic" problem.] 
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Next we considered the more interesting case of the interacting 

theory. We took ~=0.65n corresponding to the weakly attractive coupling 

region in which there is a single fermion-antifermion bound state. [In 

general, there are n bound states for (&)n<n<(s)n.] Taking the 

fermion mass mFoD =0.1178 as before, the infinite volume bound state mass 

is m B-=0.1762. The Monte Carlo results for the fermion and bound state 

masses on lattices of spatial dimension 100, 50, 30, 20, 10, and 6 sites 

are shown in Fig. 3. The fermion is close to its infinite volume value 

for Lr~30, dips slightly at L=20 and then increases rapidly for smaller 

lattices in a manner similar to the free fermion case. In contrast, the 

bound state mass Is noticeably below mB, even for L=50 and is more than 

20% low for L=20. For very small lattices, the bound state mass turns 

around and begins to increase rapidly, apparently in unison with the 

fermion mass. 

The rest of our Monte Carlo calculations were devoted to 

understanding the bound state mass curve in Fig. 3. We found that this 

curve is the result of two competing effects. The large positive mass 

shift of the bound state for very small lattices is a result of the 

increasing mass of its fermion constituents. The size scale at which 

this effect becomes relevant is roughly 2mF1=17 sites. To verify this 

interpretation, we increased the fermion mass to mFm=0.2043 or 2m;'rJlO 

sites. For lattices down to L=lO, the fermion mass was essentially 

equal to its infinite volume value while the bound state mass was 

monotonically decreasing with no tendency to turn upward (see Ref. 4 for 

details), thus confirming the idea that the relevant length scale for 

the positive component of the mass shift Is the fermion Compton 

wavelength. 
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The other finite size effect exhibited by the bound state mass 

curve in Fig. 3 is a negative mass shift for lattices of moderate size. 

We found that the box size at which thls effect becomes relevant is 

determined by the spatial extent of the bound state wave function. We 

looked at wave functions on a 30x30 lattice for three different values 

of the coupling constant: JI = 0.653, 0.72n, and 0.83~ (g = 1.02, 1.76, 

and 3.15 respectively). The Monte Carlo results for the square of the 

wave function Y(y), which were extracted from the correlation functions 

(3), are shown in Fig. 4. The theoretical infinite volume bound state 

mass was held fixed at mgoo=0.1762. The measured values of the mass on a 

30x30 lattice were mB=.1348+.0024, .1548+.0042, and .1751+.0050 for 

~=.65n, .73n, and .82n respectively. Note that as we increase the 

coupling and pull in the wave function to a smaller size, the mass 

approaches the correct infinite volume value. For the strongest of the 

three couplings, .82n, the wave function is quite well contained in the 

30 site box, and correspondingly, we see no finite size correction to 

the mass (mB=mB, within errors). In fact, the mass correction in all 

cases appears to be roughly proportional to lY(L/Z)l*, i.e. the squared 

wave function at maximum separation on the periodic lattice. Returning 

to the bound state mass curve in Fig. 3, we find that a very good 

description of the finite size effects for L>30 is given by 

mB = mB, + c (P(L/2)lZ (5) 

This gives the solid curve in Flg. 3. In Eq. (5) we measured the wave 

function for each value of L directly, using a lattice of length L. 

However, these values could have been quite accurately estimated using 

only the data from the 30 site lattice by simply fitting the tail of the 
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wave function to a periodic exponential (analogous to the right hand 

side of (1)) and extrapolating. Similarly, we might use Eq. (5) to 

define a procedure for extrapolating to infinite volume by measuring the 

mass and wave functions for two values of L and solving for m6, and c. 

For example, if we use the data for L=30 and 50 we obtain the 

extrapolated value mBm=. 1771c.005 which is actually somewhat closer to 

the correct infinite volume value (.1762) than the result we obtained 

from a direct calculation on a 100x100 lattice. 

Some of our results may have implications for QCO spectrum 

calculations (particularly those including closed loops, which is 

presently only feasible on rather small lattices). The formula (5) 

might have an analog for QCD bound states. [Presumably, in three space 

dimensions, iY(L/2)12 should be replaced by an integral of i'Plz over the 

surface of a cube.] It would then be possible to do spectrum 

calculations on moderate size lattices and correct for finite size 

effects by calculating hadron wave functions. 
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FIGURE CAPTIONS 

Fig. 1: Spin-spin correlation function on a 30x30 lattice with u=.50n 

(free fermions) and mFoo=0.1178. The solid line is the fit 

defined in Eq. (1). 

Fig. 2: The fermion mass as a function of lattice size with n=.50n 

(free fermions) and mFm =0.1178. The solid line is the fit 

defined in Eq. (4). 

Fig. 3: The fermion and bound state mass as a function of lattice size 

for mFm =0.1178 and mgm=0.1762 (~=.65n). The dashed lines are 

to guide the eye. The solid curve is a calculation of the 

finite size correction to the bound state mass from Eq. (5). 

Fig. 4: Squared wave functions for three values of the coupling 

constant. 
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